C.U.SHAH UNIVERSITY Summer Examination-2017

Subject Name : Metric Space

Subject Code : 4SC05MSC1		Branch: B.Sc.(Mathematics)	
Semester : 5	Date : 28/03/2017	Time : 02:30 To 05:30	Marks : 70
Instructions			

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1		Attempt the following questions:	(14)
C	a)	Define fixed point of function.	(01)
	b)	What is int \overline{A} ? where A={1,2,3}.	(01)
	c)	True/false: Arbitrary intersection of closed set is closed.	(01)
	d)	What is derived set?	(01)
	e)	Does [0,1] become closed set in usual metric ?	(01)
	f)	What is closer of set A?	(01)
	g)	True/false: Every open sphere is an open set	(01)
	h)	What is open sphere in \mathbf{R}^3 ?	(01)
	i)	Define : Equivalent metrics.	(01)
	j)	True/false : Continuous image of connected set is connected.	(01)
	k)	Find \bar{A} if $A = [0,2) \cup (2,4]$	(01)
	Ď	Define : Closed set .	(01)
	m)	True/false: Closer of any set is always closed.	(01)
	n)	If A is any open set then what will be <i>int A</i> ?	(01)
Attemp		Four questions from Q-2 to Q-8	
Q-2		Attempt all questions	(14)
x -	(a)	What is metric space? The function d defined $byd(x, y) = x - y $ for all $x, y \in R$, Show that (R, d) is metric space.	(07)
	(b)	If (X, d) be any metric space. Show that the function d_1 defined by $d_1(x, y) = \frac{d(x, y)}{1+d(x, y)}, \forall x, y \in X$ is a metric on .	(07)

Q-3 Attempt all questions

(a) What is an open set? Which of the following sets are open sets. (i) (-2,2) on R (ii) $\{(x,y) / x + y = 0\}$ on R^2 (iii) $\{(x,y) / x^2 + y^2 > 1\}$ on R^2 .

(b) Let the set l_{∞} of all bounded sequences $\{x_n\}$ of real number with the function d (07) defined by $d(\{x_n\}, \{y_n\}) = up\{|x_n - y_n|, n \in N\}$, show that (l_{∞}, d) is metric space.

Q-4 Attempt all questions

- (a) If d_1 and d_2 are two metric space on , then show that $(X, d_1 + d_2)$ is metric (07) space but (X, d_1^2) is not a metric space.
- (b) Which of the following sets are closed sets. Explain with figure. (i) [-2,1] on R (ii) $\{(x,y) / x = y\}$ on R^2 (iii) $\{(x,y) / x + y = 1\}$ on R^2 (iv) $\{(x,y) / x + y > 1\}$ on R^2 ,

Q-5 Attempt all questions

- (a) What is limit point of the set ? find A' for the following sets (07) (1) $(R, d_u), A = [0,1]$ (2) $(R, d_u), A = (0,1]$ (3) $(R, d_u), A = \{1,2,3,4, \dots, ...\}$.
- (b) Let (X, d) be a metric space and $Y \subseteq X$, then prove that a subset to be open in (Y, dY) if and only if there exists a set G open in (X, d) such that $A = G \cap Y$. (07)

Q-6 Attempt all questions (14) (14)

- (a) Show that $\overline{A \cup B} = \overline{A} \cup \overline{B}$ but $\overline{A \cap B} \neq \overline{A} \cap \overline{B}$. (07)
- (b) What is Boundary point of subset A? Find *intA*, *extA*, *bdA* for the following. (07) (1) X = R, A = Q(2) X = R = A = (1, 2) + (2, 4)

(2) X = R, $A = (1,2] \cup (3,4)$

Q-7Attempt all questions(14)(a) If $A \subseteq R$ is closed and bounded ,Show that A is compact.(07)(b) What is compact set? Show that every compact subset F of a metric space (X, d)(07)

(b) What is compact set? Show that every compact subset F of a metric space (X, d) (07) is closed.

Q-8Attempt all questions(14)(a)What is connected set? if Y is connected subset of metric space (X, d), show that(07)

- Y cannot be expressed as disjoint union of two non-empty closed sets in Y.
- (b) State and prove Banach fixed point theorem

(07)

(14)

(07)

(14)

(07)

(14)